IBT-UNAM : Dra. Maria Alejandra Bravo de la Parra
- Licenciatura: Investigacion Biomedica Basica, Instituto de Investigaciones Biomedicas-UNAM (1985) - Maestría: Investigacion Biomedica Basica, CIFN-UNAM (1986) - Doctorado: Investigacion Biomedica Basica, CIFN-UNAM (1989) - Mencion honorífica en examen profesional (1985) - Mencion honorífica en examen de Doctorado - Medalla "Gabino Barreda", Licenciatura (1985) - Medalla "Gabino Barreda", Doctorado (1989) - Estancia de Investigación: Companía Biotecnologica "Plant Genetic Systems", Gante, Belgica (1990-1991)
Reconocimiento Griswold Lecturer Universidad de Cornel New York USA (2014) Medalla Omecihuatl Inmujeres Instituto de las Mujeres de la Ciudad de México (2013) Premio L'oreal-UNESCO Awards for Women in Science (2010) Premio a la mejor Investigación en Biotecnología Agrícola AgroBIO-México (2003) Incluída en la lista de Expertos en Bioseguridad bajo el Protocolo de Cartagena de Seguridad y la Convención sobre Diversidad Biológica Universidad de Colombia (2003) Miembro de la Academia Nacional de Ciencias (2002) Disitnción Universidad Nacional para Jóvenes Académicos en el área de investigación en Ciencias Naturales UNAM (2000) Miembro del "International cry Gene Nomenclature Committee" (1999 a la fecha) Premio de la Academia Mexicana de Ciencias en el área de Ciencias Naturales (1998)
Estudiantes M.C. Nathaly Alexandre
Samira López
M.C. Igor Sena
M.C. Luisa Fernanda Velasquez
Biol. Daniela Lizeth Martinez
Biol. Nathalia Dos Santos
Ing. Anayetzi Susano
Francine Yuriko Otsuka
Publicaciones recientes
Wu,K.M. Xiao,Y.T. Xu,P.J. Wilson,K. Bravo,A. Soberon,M. Yang,X.M. Yuan,H. Jin,M.H. Zheng,W.G. Li,W.J.
2021. Rapid spread of a symbiotic virus in a major crop pest following wide-scale adoption of Bt-cotton in China bioRxiv, Preprint posted February 10., .
Lopez-Molina,S. do Nascimento,N.A. Silva-Filha,M.H.N.L. Guerrero,A. Sanchez,J. Pacheco,S. Gill,S.S. Soberon,M. Bravo,A.
2021. In vivo nanoscale analysis of the dynamic synergistic interaction of Bacillus thuringiensis Cry11Aa and Cyt1Aa toxins in Aedes aegypti PLoS Pathogens, 17, e1009199.
Wang,Z. Gan,C. Wang,J. Bravo,A. Soberon,M. Yang,Q. Zhang,J.
2021. Nutrient conditions determine the localization of Bacillus thuringiensis Vip3Aa protein in the mother cell compartment Microbial Biotechnology, 14, 551-560.
Yang,Y. Huang,X. Yuan,W. Xiang,Y. Guo,X. Wei,W. Soberon,M. Bravo,A. Liu,K.
2021. Bacillus thuringiensis cry toxin triggers autophagy activity that may enhance cell death Pesticide Biochemistry and Physiology, 171, 104728.
Jin,M. Yang,Y. Shan,Y. Chakrabarty,S. Cheng,Y. Soberon,M. Bravo,A. Liu,K. Wu,K. Xiao,Y.
2021. Two ABC transporters are differentially involved in the toxicity of two Bacillus thuringiensis Cry1 toxins to the invasive crop-pest Spodoptera frugiperda (J. E. Smith) Pest Management Science, 77, 1492-1501.
Sena da Silva,I.H. Gomez,I. Pacheco,S. Sanchez,J. Zhang,J. Luque Castellane,T.C. Aparecida Desiderio J. Soberon,M. Bravo,A. Polanczyk,R.A.
2021. Bacillus thuringiensis Cry1Ab domain III beta-16 is involved in binding to prohibitin which correlates with toxicity against Helicoverpa armigera (Lepidoptera: Noctuidae) Applied and Environmental Microbiology, 87, e01930-20.
Shi,J. Zhang,F. Chen,L. Bravo,A. Soberon,M. Sun,M.
2020. Systemic mitochondrial disruption is a key event in the toxicity of bacterial pore-forming toxins to Caenorhabditis elegans Environmental Microbiology, Dec 23 Online ahead of print, .
Wang,Z. Wang,K. Bravo,A. Soberon,M. Cai,J. Shu,C. Zhang,J.
2020. Coexistence of cry9 with the vip3A Gene in an Identical Plasmid of Bacillus thuringiensis Indicates Their Synergistic Insecticidal Toxicity Journal of Agricultural and Food Chemistry, 68, 14081-14090.
Pacheco,S. Quiliche,J.P.J. Gomez,I. Sanchez,J. Soberon,M. Bravo,A.
2020. Rearrangement of N-Terminal alpha-Helices of Bacillus thuringiensis Cry1Ab Toxin Essential for Oligomer Assembly and Toxicity Toxins (Basel), 12, E647.
Shu,C. Yan,G. Huang,S. Geng,Y. Soberon,M. Bravo,A. Geng,L. Zhang,J.
2020. Characterization of Two Novel Bacillus thuringiensis Cry8 Toxins Reveal Differential Specificity of Protoxins or Activated Toxins against Chrysomeloidea Coleopteran Superfamily Toxins (Basel), 12, .
Gomez,I. Ocelotl,J. Sanchez,J. Aguilar-Medel,S. Pena-Chora,G. Lina-Garcia,L. Bravo,A. Soberon,M.
2020. Bacillus thuringiensis Cry1Ab domain III beta-22 mutants with enhanced toxicity to Spodoptera frugiperda (J. E. Smith) Applied and Environmental Microbiology, 86, e01580-20.
Zhang,J. Jin,M. Yang,Y. Liu,L. Yang,Y. Gomez,I. Bravo,A. Soberon,M. Xiao,Y. Liu,K.
2020. The Cadherin Protein Is Not Involved in Susceptibility to Bacillus thuringiensis Cry1Ab or Cry1Fa Toxins in Spodoptera frugiperda Toxins (Basel), 12, 375.
Onofre,J. Pacheco,S. Torres-Quintero,M.C. Gill,S.S. Soberon,M. Bravo,A.
2020. The Cyt1Aa toxin from Bacillus thuringiensis inserts into target membranes via different mechanisms in insects, red blood cells, and lipid liposomes Journal of Biological Chemistry, 295, 9606-9617.
Zheng,Z. Zhang,Y. Liu,Z. Dong,Z. Xie,C. Bravo,A. Soberon,M. Mahillon,J. Sun,M. Peng,D.
2020. The CRISPR-Cas systems were selectively inactivated during evolution of Bacillus cereus group for adaptation to diverse environments ISME Journal, 14, 1479-1493.
do Nascimento,N.A. Torres-Quintero,M.C. Lopez-Molina,S. Pacheco,S. Romao,T.P. Pereira-Neves,A. Soberon,M. Bravo,A. Silva-Filha,M.H.N.L.
2020. Functional Bacillus thuringiensis Cyt1Aa is necessary to synergize Lysinibacillus sphaericus Binary toxin against Bin-resistant and refractory mosquito species Applied and Environmental Microbiology, 86, 02770-19.
Gong,L. Kang,S. Zhou,J. Sun,D. Guo,L. Qin,J. Zhu,L. Bai,Y. Ye,F. Akami,M. Wu,Q. Wang,S. Xu,B. Yang,Z. Bravo,A. Soberon,M. Guo,Z. Wen,L. Zhang,Y.
2020. Reduced Expression of a Novel Midgut Trypsin Gene Involved in Protoxin Activation Correlates with Cry1Ac Resistance in a Laboratory-Selected Strain of Plutella xylostella (L.) Toxins (Basel), 12, 76.
Anaya,P. Onofre,J. Torres-Quintero,M.C. Sanchez,J. Gill,S.S. Bravo,A. Soberon,M.
2020. Oligomerization is a key step for Bacillus thuringiensis Cyt1Aa insecticidal activity but not for toxicity against red blood cells Insect Biochemistry and Molecular Biology, 119, 103317.
Wei,W. Pan,S. Ma,Y. Xiao,Y. Yang,Y. He,S. Bravo,A. Soberon,M. Liu,K.
2020. GATAe transcription factor is involved in Bacillus thuringiensis Cry1Ac toxin receptor gene expression inducing toxin susceptibility Insect Biochemistry and Molecular Biology, 118, 103306.
Shabbir,M.Z. Zhang,T. Prabu,S. Wang,Y.Q. Wang,Z.Y. Bravo,A. Soberon,M. He,K.
2020. Identification of Cry1Ah-binding proteins through pull down and gene expression analysis in Cry1Ah-resistant and susceptible strains of Ostrinia furnacalis Pesticide Biochemistry and Physiology, 163, 200-208.
Guo,Z. Gong,L. Kang,S. Zhou,J. Sun,D. Qin,J. Guo,L. Zhu,L. Bai,Y. Bravo,A. Soberon,M. Zhang,Y.
2020. Comprehensive analysis of Cry1Ac protoxin activation mediated by midgut proteases in susceptible and resistant Plutella xylostella (L.) Pesticide Biochemistry and Physiology, 163, 23-30.
Garcia-Gomez,B.I. Cano,S.N. Zagal,E.E. Dantan-Gonzalez,E. Bravo,A. Soberon,M.
2019. Insect Hsp90 Chaperone Assists Bacillus thuringiensis Cry Toxicity by Enhancing Protoxin Binding to the Receptor and by Protecting Protoxin from Gut Protease Degradation MBio, 10, e02775-19.
Ma,Y. Zhang,J. Xiao,Y. Yang,Y. Liu,C. Peng,R. Yang,Y. Bravo,A. Soberon,M. Liu,K.
2019. The Cadherin Cry1Ac Binding-Region is Necessary for the Cooperative Effect with ABCC2 Transporter Enhancing Insecticidal Activity of Bacillus thuringiensis Cry1Ac Toxin Toxins (Basel), 11, 538.
Wan,L. Lin,J. Du,H. Bravo,A. Soberon,M. Sun,M.
2019. Bacillus thuringiensis targets the host intestinal epithelial junctions for successful infection of Caenorhabditis elegans Environmental Microbiology, 21, 1086-1098.
Liu,Y. Wang,Y. Shu,C. Lin,K. Song,F. Bravo,A. Soberon,M. Zhang,J.
2018. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests Applied and Environmental Microbiology, 84, e01996-17.
Bravo,A. Lopez-Diaz,J.A. Yamamoto,T. Harding,K. Zhao,J.J. Mendoza,G. Onofre,J. Torres,M.C. Nelson,M.E. Wu,G. Sethi,A. Soberon,M.
2018. Susceptible and mCry3A resistant corn rootworm larvae killed by a non-hemolytic Bacillus thuringiensis Cyt1Aa mutant Scientific Reports, 8, 17805.
Sena de Silva,I. Gomez,I. Sanchez,J. Martinez de Castro,D.L. Valicente,F.H. Soberon,M. Polanczyk,R.A. Bravo,A.
2018. Identification of midgut membrane proteins from different instars of Helicoverpa armigera (Lepidoptera: Noctuidae) that bind to Cry1Ac toxin PLoS ONE, 13, e0207789.
Pena-Cardena,A. Grande,R. Sanchez,J. Tabashnik,B.E. Bravo,A. Soberon,M. Gomez,I.
2018. The C-terminal protoxin domain of Bacillus thuringiensis Cry1Ab toxin has a functional role in binding to GPI-anchored receptors in the insect midgut Journal of Biological Chemistry, 293, 20263-20272.
Gomez,I. Ocelotl,J. Sanchez,J. Lima,C. Martins,E. Rosales-Juarez,A. Aguilar-Medel,S. Abad,A. Dong,H. Monnerat,R. Pena,G. Zhang,J. Nelson,M. Wu,G. Bravo,A. Soberon,M.
2018. Enhancement of Bacillus thuringiensis Cry1Ab and Cry1Fa toxicity to Spodoptera frugiperda by domain III mutations indicates two limiting steps in toxicity as defined by receptor binding and protein stability Applied and Environmental Microbiology, 84, e01393-18.
Rocha-Munive,M.G. Soberon,M. Castaneda,S. Niaves,E. Scheinvar,E. Eguiarte,L.E. Mota-Sanchez,D. Rosales-Robles,E. Nava-Camberos,U. Martinez-Carrillo,J.L. Blanco,C.A. Bravo,A. Souza,V.
2018. Evaluation of the Impact of Genetically Modified Cotton After 20 Years of Cultivation in Mexico Frontiers in Bioengineering and Biotechnology, 6, 82.
Gomez,I. Rodriguez-Chamorro,D.E. Flores-Ramirez,G. Grande,R. Zuniga,F. Portugal,F.J. Sanchez,J. Pacheco,S. Bravo,A. Soberon,M.
2018. Spodoptera frugiperda (J. E. Smith) aminopeptidase N1 is functional receptor of Bacillus thuringiensis Cry1Ca toxin Applied and Environmental Microbiology, 84, UNSP e01089-18.
Liu,L. Chen,Z. Yang,Y. Xiao,Y. Liu,C. Ma,Y. Soberon,M. Bravo,A. Yang,Y. Liu,K.
2018. A single amino acid polymorphism in ABCC2 loop 1 is responsible of differential toxicity of Bacillus thuringiensis Cry1Ac toxin in different Spodoptera (Noctuidae) species Insect Biochemistry and Molecular Biology, 100, 59-65.
Pacheco,S. Gomez,I. Sanchez,J. Garcia-Gomez,B.I. Czajkowsky,D.M. Zhang,J. Soberon,M. Bravo,A.
2018. Helix alpha-3 inter-molecular salt bridges and conformational changes are essential for toxicity of Bacillus thuringiensis 3D-Cry toxin family Scientific Reports, 8, 10331.
Wang,Z. Fang,L. Zhou,Z. Pacheco,S. Gomez,I. Song,F. Soberon,M. Zhang,J. Bravo,A.
2018. Specific binding between Bacillus thuringiensis Cry9Aa and Vip3Aa toxins synergizes their toxicity against Asiatic rice borer (Chilo suppressalis) Journal of Biological Chemistry, 293, 11447.
Wang,K. Shu,C. Soberon,M. Bravo,A. Zhang,J.
2018. Systematic characterization of Bacillus Genetic Stock Center Bacillus thuringiensis strains using Multi-Locus Sequence Typing Journal of Invertebrate Pathology, 155, 5-13.
Torres-Quintero,M.C. Gomez,I. Pacheco,S. Sanchez,J. Flores,H. Osuna,J. Mendoza,G. Soberon,M. Bravo,A.
2018. Engineering Bacillus thuringiensis Cyt1Aa toxin specificity from dipteran to lepidopteran toxicity Scientific Reports, 8, 4989.
Shabbir,M.Z. Quan,Y. Wang,Z. Bravo,A. Soberon,M. He,K.
2018. Characterization of the Cry1Ah resistance in Asian corn Borer and its cross-resistance to other Bacillus thuringiensis toxins Scientific Reports, 8, 234.
Soberon,M. Portugal,L. Garcia-Gomez,B.I. Sanchez,J. Onofre,J. Gomez,I. Pacheco,S. Bravo,A.
2018. Cell lines as models for the study of Cry toxins from Bacillus thuringiensis Insect Biochemistry and Molecular Biology, 93, 66-78.
Chen,W.B. Lu,G.Q. Cheng,H.M. Liu,C.X. Xiao,Y.T. Xu,C. Shen,Z.C. Soberon,M. Bravo,A. Wu,K.M.
2017. Transgenic cotton co-expressing chimeric Vip3AcAa and Cry1Ac confers effective protection against Cry1Ac-resistant cotton bollworm Transgenic Research, 26, 763-774.
Martinez de Castro,D.L. Garcia-Gomez,B.I. Gomez,I. Bravo,A. Soberon,M.
2017. Identification of Bacillus thuringiensis Cry1AbMod binding-proteins from Spodoptera frugiperda Peptides, 98, 99-105.
Pacheco,S. Gomez,I. Sanchez,J. Garcia-Gomez,B.I. Soberon,M. Bravo,A.
2017. Intra-molecular salt bridge in Bacillus thuringiensis Cry4Ba toxin is involved in the stability of helix alpha-3 that is needed for oligomerization and insecticidal activity Applied and Environmental Microbiology, 83, e01515-e01517.
Li,J. Ma,Y. Yuan,W. Xiao,Y. Liu,C. Wang,J. Peng,J. Peng,R. Soberon,M. Bravo,A. Yang,Y. Liu,K.
2017. FOXA transcriptional factor modulates insect susceptibility to Bacillus thuringiensis Cry1Ac toxin by regulating the expression of toxin-receptor ABCC2 and ABCC3 genes Insect Biochemistry and Molecular Biology, 88, 1-11.
Ocelotl,J. Sanchez,J. Gomez,I. Tabashnik,B.E. Bravo,A. Soberon,M.
2017. ABCC2 is associated with Bacillus thuringiensis Cry1Ac toxin oligomerization and membrane insertion in diamondback moth Scientific Reports, 7, 2386.
Jiang,J. Huang,Y. Shu,C. Soberon,M. Bravo,A. Liu,C. Song,F. Lai,J. Zhang,J.
2017. Holotrichia oblita Midgut Proteins That Bind to Bacillus thuringiensis Cry8-Like Toxin and Assembly of the H. oblita Midgut Tissue Transcriptome Applied and Environmental Microbiology, 83, e00541-17.
Onofre,J. Gaytan,M.O. Pena-Cardena,A. Garcia-Gomez,B.I. Pacheco,S. Gomez,I. Bravo,A. Soberon,M.
2017. Identification of Aminopeptidase-N2 as a Cry2Ab binding protein in Manduca sexta Peptides, 98, 93-98.
Xiao,Y. Dai,Q. Hu,R. Pacheco,S. Yang,Y. Liang,G. Soberon,M. Bravo,A. Liu,K. Wu,K.
2017. A Single Point Mutation Resulting in Cadherin Mis-localization Underpins Resistance against Bacillus thuringiensis Toxin in Cotton Bollworm Journal of Biological Chemistry, 292, 2933-2943.
Zhou,Z. Liu,Y. Liang,G. Huang,Y. Bravo,A. Soberon,M. Song,F. Zhou,X. Zhang,J.
2017. Insecticidal specificity of Cry1Ah to Helicoverpa armigera is determined by binding APN1 through domain II loops 2 and 3 Applied and Environmental Microbiology, 83, e02864-16.
Portugal,L. Munoz-Garay,C. Martinez-deCastro,D.L. Soberon,M. Bravo,A.
2017. Toxicity of Cry1A toxins from Bacillus thuringiensis to CF1 cells does not involve activation of adenylate cyclase/PKA signaling pathway Insect Biochemistry and Molecular Biology, 80, 21-31.
Rubio,V.P. Bravo,A. Olmos,J.
2017. Identification of a Bacillus thuringiensis Surface-Layer-Protein with Cytotoxic Activity against MDA-MB-231 Breast Cancer Cells Journal of Microbiology and Biotechnology, 27, 36-42.
Queiroz,P.R. Ramiro,C.A. Martins,E.S. Soberon,M. Bravo,A. Monnerat,R.G.
2016. Mitochondrial markers to distinguish Spodoptera frugiperda populations associated with corn and cotton crops Pesquisa Agropecuaria Brasileira, 51, 692-696.
Wang,Y. Wang,Y. Wang,Z. Bravo,A. Soberon,M. He,K.
2016. Genetic Basis of Cry1F-Resistance in a Laboratory Selected Asian Corn Borer Strain and Its Cross-Resistance to Other Bacillus thuringiensis Toxins PLoS ONE, 11, e0161189.
Jin,T. Duan,X. Bravo,A. Soberon,M. Wang,Z. He,K.
2016. Identification of an alkaline phosphatase as a putative Cry1Ac binding protein in Ostrinia furnacalis (Gunée) Pesticide Biochemistry and Physiology, 131, 80-86.
Fang,L. Wang,B. Zhou,Z. Yang,S. Shu,C. Song,F. Bravo,A. Soberon,M. Zhang,J.
2016. Oligomerization of Cry9Aa in solution without receptor binding, is not related with insecticidal activity Electronic Journal of Biotechnology, 21, 54-57.
Zhang,D. Xiao,Y. Hussain,D.K. Soberon,M. Bravo,A. Wu,K.
2016. Molecular Cloning, Expression, and Identification of Bre Genes Involved in Glycosphingolipids Synthesis in Helicoverpa armigera (Lepidoptera: Noctuidae) Journal Of Economic Entomology, 109, 1415-1423.
Zhou,Z. Wang,Z. Liu,Y. Liang,G. Shu,C. Song,F. Zhou,X. Bravo,A. Soberon,M. Zhang,J.
2016. Identification of ABCC2 as a binding protein of Cry1Ac on brush border membrane vesicles from Helicoverpa armigera by an improved pull-down assay Microbiologyopen, 5, 659-669.
Xiao,Y. Liu,K. Zhang,D. Gong,L. He,F. Soberon,M. Bravo,A. Tabashnik,B.E. Wu,K.
2016. Resistance to Bacillus thuringiensis Mediated by an ABC Transporter Mutation Increases Susceptibility to Toxins from Other Bacteria in an Invasive Insect PLoS Pathogens, 12, e1005450.
Canton,P.E. Cancino-Rodezno,A. Gill,S.S. Soberon,M. Bravo,A.
2015. Transcriptional cellular responses in midgut tissue of Aedes aegypti larvae following intoxication with Cry11Aa toxin from Bacillus thuringiensis BMC Genomics, 16, 1042.
Ocelotl,J. Sanchez,J. Arroyo,R. Garcia-Gomez,B.I. Gomez,I. Unnithan,G.C. Tabashnik,B.E. Bravo,A. Soberon,M.
2015. Binding and Oligomerization of Modified and Native Bt Toxins in Resistant and Susceptible Pink Bollworm PLoS ONE, 10, e0144086.
Pacheco,S. Canton,E. Zuniga-Navarrete,F. Pecorari,F. Bravo,A. Soberon,M.
2015. Improvement and efficient display of Bacillus thuringiensis toxins on M13 phages and ribosomes AMB Express, 5, 73.
Tabashnik,B.E. Zhang,M. Fabrick,J.A. Wu,Y. Gao,M. Huang,F. Wei,J. Zhang,J. Yelich,A. Unnithan,G.C. Bravo,A. Soberon,M. Carriere,Y. Li,X.
2015. Dual mode of action of Bt proteins: protoxin efficacy against resistant insects Scientific Reports, 5, 15107.
Shu,C. Tan,S. Yin,J. Soberon,M. Bravo,A. Liu,C. Geng,L. Song,F. Li,K. Zhang,J.
2015. Assembling of Holotrichia parallela (dark black chafer) midgut tissue transcriptome and identification of midgut proteins that bind to Cry8Ea toxin from Bacillus thuringiensis Applied Microbiology and Biotechnology, 99, 7209-7218.
Monnerat,R. Martins,E. Macedo,C. Queiroz,P. Praca,L. Soares,C.M. Moreira,H. Grisi,I. Silva,J. Soberon,M. Bravo,A.
2015. Evidence of Field-Evolved Resistance of Spodoptera frugiperda to Bt Corn Expressing Cry1F in Brazil That Is Still Sensitive to Modified Bt Toxins PLoS ONE, 10, e0119544.
Zuniga-Navarrete,F. Gomez,I. Pena,G. Amaro,I. Ortiz,E. Becerril,B. Ibarra,J.E. Bravo,A. Soberon,M.
2015. Identification of Bacillus thuringiensis Cry3Aa toxin domain II loop 1 as the binding site of Tenebrio molitor cadherin repeat CR12 Insect Biochemistry and Molecular Biology, 59, 50-57.
Gomez,I. Flores,B. Bravo,A. Soberon,M.
2015. Bacillus thuringiensis Cry1AbMod toxin counters tolerance associated with low cadherin expression but not that associated with low alkaline phosphatase expression in Manduca sexta Peptides, 68, 130-133.
Garcia,K. Ibarra,J.E. Bravo,A. Diaz,J. Gutierrez,D. Torres,P.V. Gomez de Leon P.
2015. Variability of Bacillus thuringiensis Strains by ERIC-PCR and Biofilm Formation Current Microbiology, 70, 10-18.
Chavez,C. Recio-Totoro,B. Flores-Escobar,B. Lanz-Mendoza,H. Sanchez,J. Soberon,M. Bravo,A.
2015. Nitric oxide participates in the toxicity of Bacillus thuringiensis Cry1Ab toxin to kill Manduca sexta larvae Peptides, 68, 134-139.
Monnerat,R. Pereira,E. Teles,B. Martins,E. Praca,L. Queiroz,P. Soberon,M. Bravo,A. Ramos,F. Soares,C.M.
2014. Synergistic activity of Bacillus thuringiensis toxins against Simulium spp. larvae Journal of Invertebrate Pathology, 121, 70-73.
Gomez,I. Sanchez,J. Munoz-Garay,C. Matus,V. Gill,S.S. Soberon,M. Bravo,A.
2014. Bacillus thuringiensis Cry1A toxins are versatile-proteins with multiple modes of action: two distinct pre-pores are involved in toxicity Biochemical Journal, 459, 383-396.
Canton,P.E. Lopez-Diaz,J.A. Gill,S.S. Bravo,A. Soberon,M.
2014. Membrane binding and oligomer membrane insertion are necessary but insufficient for Bacillus thuringiensis Cyt1Aa toxicity Peptides, 53, 286-291.
Portugal,L. Gringorten,J.L. Caputo,G.F. Soberon,M. Munoz-Garay,C. Bravo,A.
2014. Toxicity and mode of action of insecticidal Cry1A proteins from Bacillus thuringiensis in an insect cell line, CF-1 Peptides, 53, 292-299.
Tabashnik,B.E. Fabrick,J.A. Unnithan,G.C. Yelich,A.J. Masson,L. Zhang,J. Bravo,A. Soberon,M.
2013. Efficacy of Genetically Modified Bt Toxins Alone and in Combinations Against Pink Bollworm Resistant to Cry1Ac and Cry2Ab PLoS ONE, 8, e80496.
Lopez-Diaz,J.A. Canton,P.E. Gill,S.S. Soberon,M. Bravo,A.
2013. Oligomerization is a key step in Cyt1Aa membrane insertion and toxicity but not necessary to synergize Cry11Aa toxicity in Aedes aegypti larvae Environmental Microbiology, 15, 3030-3039.
Garcia-Gomez,B.I. Sanchez,J. Martinez de Castro,D.L. Ibarra,J.E. Bravo,A. Soberon,M.
2013. Efficient production of Bacillus thuringiensis Cry1AMod toxins under regulation of cry3Aa promoter and single cysteine mutations in the protoxin region Applied and Environmental Microbiology, 79, 6969-6973.
Flores-Escobar,B. Rodriguez-Magadan,H. Bravo,A. Soberon,M. Gomez,I.
2013. Differential role of Manduca sexta aminopeptidase-N and alkaline phosphatase in the mode of action of Cry1Aa, Cry1Ab, and Cry1Ac toxins from Bacillus thuringiensis Applied and Environmental Microbiology, 79, 4543-4550.
Bedoya-Perez,L.P. Cancino-Rodezno,A. Flores-Escobar,B. Soberon,M. Bravo,A.
2013. Role of UPR Pathway in Defense Response of Aedes aegypti against Cry11Aa Toxin from Bacillus thuringiensis International Journal of Molecular Sciences, 14, 8467-8478 [Correction vol 17(12) p 2021].
Zuniga-Navarrete,F. Gomez,I. Pena,G. Bravo,A. Soberon,M.
2013. A Tenebrio molitor GPI-anchored alkaline phosphatase is involved in binding of Bacillus thuringiensis Cry3Aa to brush border membrane vesicles Peptides, 41, 81-86.
Soberon,M. Lopez-Diaz,J.A. Bravo,A.
2013. Cyt toxins produced by Bacillus thuringiensis: A protein fold conserved in several pathogenic microorganisms Peptides, 41, 87-93.
Pardo-Lopez,L. Soberon,M. Bravo,A.
2013. Bacillus thuringiensis insecticidal 3-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection FEMS Microbiology Reviews, 37, 3-22.
Bravo,A. Gomez,I. Porta,H. Garcia-Gomez,B.I. Rodriguez-Almazan,C. Pardo,L. Soberon,M.
2013. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity Microbial Biotechnology, 6, 17-26.
Jimenez,A.I. Reyes,E.Z. Cancino-Rodezno,A. Bedoya-Perez,L.P. Caballero-Flores,G.G. Muriel-Millan,L.F. Likitvivatanavong,S. Gill,S.S. Bravo,A. Soberon,M.
2012. Aedes aegypti alkaline phosphatase ALP1 is a functional receptor of Bacillus thuringiensis Cry4Ba and Cry11Aa toxins Insect Biochemistry and Molecular Biology, 42, 683-689.
Soberon,M. Rodriguez-Almazan,C. Munoz-Garay,C. Pardo-Lopez,L. Porta,H. Bravo,A.
2012. Bacillus thuringiensis Cry and Cyt mutants useful to counter toxin action in specific environments and to overcome insect resistance in the field Pesticide Biochemistry and Physiology, 104, 111-117.
Cancino-Rodezno,A. Lozano,L. Oppert,C. Castro,J.I. Lanz-Mendoza,H. Encarnacion,S. Evans,A.E. Gill,S.S. Soberon,M. Jurat-Fuentes,J.L. Bravo,A.
2012. Comparative Proteomic Analysis of Aedes aegypti Larval Midgut after Intoxication with Cry11Aa Toxin from Bacillus thuringiensis PLoS ONE, 7, e37034.
Rodriguez-Almazan,C. Reyes,E.Z. Zuniga-Navarrete,F. Munoz-Garay,C. Gomez,I. Evans,A.M. Likitvivatanavong,S. Bravo,A. Gill,S.S. Soberon,M.
2012. Cadherin binding is not a limiting step for Bacillus thuringiensis subs. israelensis Cry4Ba toxicity to Aedes aegypti larvae Biochemical Journal, 443, 711-717.
Porta,H. Munoz-Minutti,C. Soberon,M. Bravo,A.
2011. Induction of Manduca sexta Larvae Caspases Expression in Midgut Cells by Bacillus thuringiensis Cry1Ab Toxin Psyche: A Journal of Entomology, , Article ID 938249.
Tabashnik,B.E. Huang,F. Ghimire,M.N. Leonard,B.R. Siegfried,B.D. Rangasamy,M. Yang,Y. Wu,Y. Gahan,L.J. Heckel,D.G. Bravo,A. Soberon,M.
2011. Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance Nature Biotechnology, 29, 1128-1131.
Porta,H. Jimenez,G. Cordoba,E. Leon,P. Soberon,M. Bravo,A.
2011. Tobacco plants expressing the Cry1AbMod toxin suppress tolerance to Cry1Ab toxin of Manduca sexta cadherin-silenced larvae Insect Biochemistry and Molecular Biology, 41, 513-519.
Carmona,D. Rodriguez-Almazan,C. Munoz-Garay,C. Portugal,L. Perez,C. de Maagd,R.A. Bakker,P. Soberon,M. Bravo,A.
2011. Dominant Negative Phenotype of Bacillus thuringiensis Cry1Ab, Cry11Aa and Cry4Ba Mutants Suggest Hetero-Oligomer Formation among Different Cry Toxins PLoS ONE, 6, e19952.
Zavala,L.E. Pardo-Lopez,L. Canton,P.E. Gomez,I. Soberon,M. Bravo,A.
2011. Domains II and III of Bacillus thuringiensis Cry1Ab toxin remain exposed to the solvent after insertion of part of domain I into the membrane Journal of Biological Chemistry, 286, 19109-19117 [Correction: vol 287 p 34499].
Bravo,A. Likitvivatanavong,S. Gill,S.S. Soberon,M.
2011. Bacillus thuringiensis: A story of a successful bioinsecticide Insect Biochemistry and Molecular Biology, 41, 423-431.
Likitvivatanavong,S. Chen,J. Evans,A.M. Bravo,A. Soberon,M. Gill,S.S.
2011. Multiple Receptors as Targets of Cry Toxins in Mosquitoes Journal of Agricultural and Food Chemistry, 59, 2829-2838.
Rodriguez-Almazan,C. Ruiz de Escudero,I. Canton,P.E. Munoz-Garay,C. Perez,C. Gill,S.S. Soberon,M. Bravo,A.
2011. The amino- and carboxyl-terminal fragments of the Bacillus thuringiensis Cyt1Aa toxin have differential roles on toxin oligomerization and pore formation Biochemistry, 50, 388-396.
Terenius,O. Papanicolaou,A. Garbutt,J.S. Eleftherianos,I. Huvenne,H. Sriramana,K. Albrechtsen,M. An,C. Aymeric,J.L. Barthel,A. Bebas,P. Bitra,K. Bravo,A. Chevalier,F. Collinge,D.P. Crava,C.M. de Maagd,R.A. Duvic,B. Erlandson,M. Faye,I. Felfoldi,G. Fujiwara,H. Futahashi,R. Gandhe,A.S. Gatehouse,H.S. Gatehouse,L.N. Giebultowicz,J. Gomez,I. Grimmelikhuijzen,C.J. Groot,A.T. Hauser,F. Heckel,D.G. Hegedus,D.D. Hrycaj,S. Huang,L. Hull,J.J. Iatrou,K. Iga,M. Kanost,M.R. Kotwica,J. Li,C. Li,J. Liu,J. Lundmark,M. Matsumoto,S. Meyering-Vos,M. Millichap,P.J. Monteiro,A. Mrinal,N. Niimi,T. Nowara,D. Ohnishi,A. Oostra,V. Ozaki,K. Papakonstantinou,M. Popadic,A. Rajam,M.V. Saenko,S. Simpson,R.M. Soberon,M. Strand,M.R. Tomita,S. Toprak,U. Wang,P. Wee,C.W. Whyard,S. Zhang,W. Nagaraju,J. Ffrench-Constant,R.H. Herrero,S. Gordon,K. Swevers,L. Smagghe,G. et al
2011. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design Journal of Insect Physiology, 57, 231-245.
Likitvivatanavong,S. Chen,J. Bravo,A. Soberon,M. Gill,S.S.
2011. Cadherin, Alkaline Phosphatase, and Aminopeptidase N as Receptors of Cry11Ba Toxin from Bacillus thuringiensis subsp. jegathesan in Aedes aegypti? Applied and Environmental Microbiology, 77, 24-31.
Porta,H. Cancino-Rodezno,A. Soberon,M. Bravo,A.
2011. Role of MAPK p38 in the cellular responses to pore-forming toxins Peptides, 32, 601-606.
Canton,P.E. Reyes,E.Z. Escudero,I.R. Bravo,A. Soberon,M.
2011. Binding of Bacillus thuringiensis subsp. israelensis Cry4Ba to Cyt1Aa has an important role in synergism Peptides, 32, 595-600.
Gomez,I. Arenas,I. Pacheco,S. Bravo,A. Soberon,M.
2010. New Insights into the Mode of Action of Cry1Ab Toxin Used in Transgenic Insect-resistant Crops Southwestern Entomologist, 35, 387-390.
Munoz-Garay,C. Soberon,M. Bravo,A.
2010. Mode of Action of Bacillus thuringiensis-Genetically Modified Cry1AbMod and Cry1AcMod Toxins Role of Alkaline pH in Toxin Oligomerization Southwestern Entomologist, 35, 383-386.
Fernandez-Ruvalcaba,M. Pena-Chora,G. Romo-Martinez,A. Hernandez-Velazquez,V. de la Parra,A.B. De la Rosa,D.P.
2010. Evaluation of Bacillus thuringiensis pathogenicity for a strain of the tick, Rhipicephalus microplus, resistant to chemical pesticides Journal of Insect Science, 10, 186-190.
Vazquez-Pineda,A. Yanez-Perez,G.N. Lopez-Arellano,M.E. Mendoza de Gives,P. Liebano-Hernandez,E. Bravo-de-la-Parra,A.
2010. Biochemical Characterization of Two Purified Proteins of the IB-16 Bacillus thuringiensis Strains and Their Toxicity Against the Sheep Nematode Haemonchus contortus In vitro Transboundary and Emerging Diseases, 57, 111-114.
Fernandez-Luna,M.T. Tabashnik,B.E. Lanz-Mendoza,H. Bravo,A. Soberon,M. Miranda-Rios,J.
2010. Single concentration tests show synergism among Bacillus thuringiensis subsp. israelensis toxins against the malaria vector mosquito Anophelesalbimanus Journal of Invertebrate Pathology, 104, 231-233.
Arenas,I. Bravo,A. Soberon,M. Gomez,I.
2010. Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin Journal of Biological Chemistry, 285, 12497-503.
Martins,E.S. Monnerat,R.G. Queiroz,P.R. Dumas,V.F. Braz,S.V. de Souza Aguiar,R.W. Mendes-Gomes,A.C. Sanchez,J. Bravo,A. Ribeiro,B.M.
2010. Midgut GPI- anchored proteins with alkaline phosphatase activity from the cotton boll weevil (Anthonomus grandis) can be the putative receptors for the Cry1B protein of Bacillus thuringiensis Insect Biochemistry and Molecular Biology, 40, 138-145.
Fernandez-Luna,M.T. Lanz-Mendoza,H. Gill,S.S. Bravo,A. Soberon,M. Miranda-Rios,J.
2010. An alpha-amylase is a novel receptor for Bacillus thuringiensis ssp. israelensis Cry4Ba and Cry11Aa toxins in the malaria vector mosquito Anopheles albimanus (Diptera: Culicidae) Environmental Microbiology, 12, 746-757.
Cancino-Rodezno,A. Alexander,C. Villasenor,R. Pacheco,S. Porta,H. Pauchet,Y. Soberon,M. Gill,S.S. Bravo,A.
2010. The mitogen-activated protein kinase p38 is involved in insect defense against cry toxins from Bacillus thuringiensis Insect Biochemistry and Molecular Biology, 40, 58-63 [corrigendum 43 (9) 898 2013 ].
Cancino-Rodezno,A. Porta,H. Soberon,M. Bravo,A.
2009. Defense and death responses to pore forming toxins Biotechnology and Genetic Engineering Reviews, 26, 82.
Munoz-Garay,C. Rodriguez-Almazan,C. Aguilar,J.N. Portugal,L. Gomez,I. Saab-Rincon,G. Soberon,M. Bravo,A.
2009. Oligomerization of Cry11Aa from Bacillus thuringiensis has an important role in toxicity against Aedes aegypti Applied and Environmental Microbiology, 75, 7548-7550 [Correction vol 79 (5) p 1762].
Pacheco,S. Gomez,I. Arenas,I. Saab-Rincon,G. Rodriguez-Almazan,C. Gill,S.S. Bravo,A. Soberon,M.
2009. Domain II loop 3 of Bacillus thuringiensis Cry1Ab toxin is involved in a "ping-pong" binding mechanism with Manduca sexta aminopetidase-N and cadherin receptors Journal of Biological Chemistry, 284, 32750-32757.
Chen,J. Aimanova,K.G. Fernandez,L.E. Bravo,A. Soberon,M. Gill,S.S.
2009. Aedes aegypti cadherin serves as a putative receptor of the Cry11Aa toxin from Bacillus thuringiensis subsp. israelensis Biochemical Journal, 424, 191-200.
Fernandez,L.E. Martinez-Anaya,C. Lira,E. Chen,J. Evans,A. Hernandez-Martinez,S. Lanz-Mendoza,H. Bravo,A. Gill,S.S. Soberon,M.
2009. Cloning and epitope mapping of Cry11Aa-binding sites in the Cry11Aa-receptor alkaline phosphatase from Aedes aegypti Biochemistry, 48, 8899-8907.
Franklin,M.T. Nieman,C.L. Janmaat,A.F. Soberon,M. Bravo,A. Tabashnik,B.E. Myers,J.H.
2009. Modified Bacillus thuringiensis toxins and a hybrid B. thuringiensis strain counter greenhouse-selected resistance in Trichoplusia ni Applied and Environmental Microbiology, 75, 5739-5741.
Munoz-Garay,C. Portugal,L. Pardo-Lopez,L. Jimenez-Juarez,N. Arenas,I. Gomez,I. Sanchez-Lopez,R. Arroyo,R. Holzenburg,A. Savva,C.G. Soberon,M. Bravo,A.
2009. Characterization of the mechanism of action of the genetically modified Cry1AbMod toxin that is active against Cry1Ab-resistant insects Biochimica Et Biophysica Acta-Biomembranes, 1788, 2229-2237.
Rodriguez-Almazan,C. Zavala,L.E. Munoz-Garay,C. Jimenez-Juarez,N. Pacheco,S. Masson,L. Soberon,M. Bravo,A.
2009. Dominant negative mutants of Bacillus thuringiensis Cry1Ab toxin function as anti-toxins: demonstration of the role of oligomerization in toxicity PLoS ONE, 4, e5545-[Erratum 2013 8 (2)].
Soberon,M. Gill,S.S. Bravo,A.
2009. Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells? Cellular and Molecular Life Sciences, 66, 1337-1349.
Pacheco,S. Gomez,I. Gill,S.S. Bravo,A. Soberon,M.
2009. Enhancement of insecticidal activity of Bacillus thuringiensis Cry1A toxins by fragments of a toxin-binding cadherin correlates with oligomer formation Peptides, 30, 583-588.
Pardo-Lopez,L. Munoz-Garay,C. Porta,H. Rodriguez-Almazan,C. Soberon,M. Bravo,A.
2009. Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis Peptides, 30, 589-595.
Hernandez-Linares,I. Lopez-Arellano,M.E. Mendoza de Gives,P. Liebano-Hernandez,E. Bravo-de-la-Parra,A.
2008. Lethal activity of two Bacillus thuringiensis strains against Haemonchus contortus histotropic larvae Annals of the New York Academy of Sciences, 1149, 164-166.
Bravo,A. Soberon,M.
2008. How to cope with insect resistance to Bt toxins? Trends in Biotechnology, 26, 573-579.
Fernandez,L.E. Gomez,I. Pacheco,S. Arenas,I. Gill,S.S. Bravo,A. Soberon,M.
2008. Employing phage display to study the mode of action of Bacillus thuringiensis Cry toxins Peptides, 29, 324-329.
Jimenez-Juarez,N. Munoz-Garay,C. Gomez,I. Gill,S.S. Soberon,M. Bravo,A.
2008. The pre-pore from Bacillus thuringiensis Cry1Ab toxin is necessary to induce insect death in Manduca sexta Peptides, 29, 318-323.
Soberon,M. Pardo-Lopez,L. Lopez,I. Gomez,I. Tabashnik,B.E. Bravo,A.
2007. Engineering Modified Bt Toxins to Counter Insect Resistance Science, 318, 1640-1642 [erratum vol 345 (6198) art num 1256132].
Ishikawa,H. Hoshino,Y. Motoki,Y. Kawahara,T. Kitajima,M. Kitami,M. Watanabe,A. Bravo,A. Soberon,M. Honda,A. Yaoi,K. Sato,R.
2007. A system for the directed evolution of the insecticidal protein from Bacillus thuringiensis Molecular Biotechnology, 36, 90-101.
Ochoa-Campuzano,C. Real,M.D. Martinez-Ramirez,A.C. Bravo,A. Rausell,C.
2007. An ADAM metalloprotease is a Cry3Aa Bacillus thuringiensis toxin receptor Biochemical and Biophysical Research Communications, 362, 437-442.
Perez,C. Munoz-Garay,C. Portugal,L.C. Sanchez,J. Gill,S.S. Soberon,M. Bravo,A.
2007. Bacillus thuringiensis ssp. israelensis Cyt1Aa enhances activity of Cry11Aa toxin by facilitating the formation of a pre-pore oligomeric structure Cellular Microbiology, 9, 2931-2937.
Rausell,C. Ochoa-Campuzano,C. Martinez-Ramirez,A.C. Bravo,A. Real,M.D.
2007. A membrane associated metalloprotease cleaves Cry3Aa Bacillus thuringiensis toxin reducing pore formation in Colorado potato beetle brush border membrane vesicles Biochimica et Biophysica Acta (BBA), 362, 437-442.
Jimenez-Juarez,N. Munoz-Garay,C. Gomez,I. Saab-Rincon,G. Damian-Almazo,J.Y. Gill,S.S. Soberon,M. Bravo,A.
2007. Bacillus thuringiensis Cry1Ab mutants affecting oligomer formation are non toxic to Manduca sexta larvae Journal of Biological Chemistry, 282, 21222-21229 [correction 2013 vol 288 (12) 8560].
Bravo,A. Gill,S.S. Soberon,M.
2007. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control Toxicon, 49, 423-435.
Soberon,M. Fernandez,L.E. Perez,C. Gill,S.S. Bravo,A.
2007. Mode of action of mosquitocidal Bacillus thuringiensis toxins Toxicon, 49, 597-600.
Gomez,I. Pardo-Lopez,L. Munoz-Garay,C. Fernandez,L.E. Perez,C. Sanchez,J. Soberon,M. Bravo,A.
2007. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis Peptides, 28, 169-173.
Sauka,D.H. Sanchez,J. Bravo,A. Benintende,G.B.
2007. Toxicity of Bacillus thuringiensis delta-endotoxins against bean shoot borer (Epinotia aporema Wals.) larvae, a major soybean pest in Argentina Journal of Invertebrate Pathology, 94, 125-129.
Munoz-Garay,C. Sanchez,J. Darszon,A. de Maagd,R.A. Bakker,P. Soberon,M. Bravo,A.
2006. Permeability Changes of Manduca sexta Midgut Brush Border Membranes Induced by Oligomeric Structures of Different Cry Toxins Journal of Membrane Biology, 212, 61-68 [Erratum: 245 (12) 859].
Lopez,M.E. Flores,J. Mendoza,P. Vazquez,V. Liebano,E. Bravo,A. Herrera,D. Godines,E. Vargas,P. Zamudio,F.
2006. Use of Bacillus thuringiensis Toxin as an Alternative Method of Control against Haemonchus contortus Annals of the New York Academy of Sciences, 1081, 347-354.
Gomez,I. Arenas,I. Benitez,I. Miranda-Rios,J. Becerril,B. Grande,R. Almagro,J.C. Bravo,A. Soberon,M.
2006. Specific epitopes of domains II and IIII of bacillus thuringiensis Cry1Ab toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in manduca sexta Journal of Biological Chemistry, 281, 34032-34039.
Monnerat,R. Martins,E. Queiroz,P. Orduz,S. Jaramillo,G. Benintende,G. Cozzi,J. Real,M.D. Martinez-Ramirez,A. Rausell,C. Ceron,J. Ibarra,J.E. Del Rincon-Castro,M.C. Espinoza,A.M. Meza-Basso,L. Cabrera,L. Sanchez,J. Soberon,M. Bravo,A.
2006. Genetic variability of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) populations from Latin America is associated with variations in susceptibility to Bacillus thuringiensis Cry toxins Applied and Environmental Microbiology, 72, 7029-7035.
Pardo-Lopez,L. Gomez,I. Rausell,C. Sanchez,J. Soberon,M. Bravo,A.
2006. Structural Changes of the Cry1Ac Oligomeric Pre-Pore from Bacillus thuringiensis Induced by N-Acetylgalactosamine Facilitates Toxin Membrane Insertion Biochemistry, 45, 10329-10336.
Pardo-Lopez,L. Gomez,I. Munoz-Garay,C. Jimenez-Juarez,N. Soberon,M. Bravo,A.
2006. Structural and functional analysis of the pre-pore and membrane-inserted pore of Cry1Ab toxin Journal of Invertebrate Pathology, 92, 172-177.
Pacheco,S. Gomez,I. Sato,R. Bravo,A. Soberon,M.
2006. Functional display of Bacillus thuringiensis Cry1Ac toxin on T7 phage Journal of Invertebrate Pathology, 92, 45-49.
Pena,G. Miranda-Rios,J. de la Riva,G. Pardo-Lopez,L. Soberon,M. Bravo,A.
2006. A Bacillus thuringiensis S-Layer Protein Involved in Toxicity against Epilachna varivestis (Coleoptera: Coccinellidae) Applied and Environmental Microbiology, 72, 353-360.
Padilla,C. Pardo-Lopez,L. de la Riva,G. Gomez,I. Sanchez,J. Hernandez,G. Nunez,M.E. Carey,M.P. Dean,D.H. Alzate,O. Soberon,M. Bravo,A.
2006. Role of Tryptophan Residues in Toxicity of Cry1Ab Toxin from Bacillus thuringiensis Applied and Environmental Microbiology, 72, 901-907.
Fernandez,L.E. Aimanova,K.G. Gill,S.S. Bravo,A. Soberon,M.
2006. A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae Biochemical Journal, 394, 77-84.
Perez,C. Fernandez,L.E. Sun,J. Folch,J.L. Gill,S.S. Soberon,M. Bravo,A.
2005. Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor Proceedings of the National Academy of Sciences of the United States of America, 102, 18303-18308.
Letowski,J. Bravo,A. Brousseau,R. Masson,L.
2005. Assessment of cry1 Gene Contents of Bacillus thuringiensis Strains by Use of DNA Microarrays Applied and Environmental Microbiology, 71, 5391-5398.
Fernandez,L.E. Perez,C. Segovia,L. Rodriguez,M.H. Gill,S.S. Bravo,A. Soberon,M.
2005. Cry11Aa toxin from Bacillus thuringiensis binds its receptor in Aedes aegypti mosquito larvae through loop alpha-8 of domain II FEBS Letters, 579, 3508-3514.
Xie,R. Zhuang,M. Ross,L.S. Gomez,I. Oltean,D.I. Bravo,A. Soberon,M. Gill,S.S.
2005. Single amino acid mutations in the cadherin receptor from heliothis virescens affect its toxin binding ability to Cry1A toxins Journal of Biological Chemistry, 280, 8416-8425.
Bravo,A. Gomez,I. Conde,J. Munoz-Garay,C. Sanchez,J. Miranda,R. Zhuang,M. Gill,S.S. Soberon,M.
2004. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains Biochimica Et Biophysica Acta-Biomembranes, 1667, 38-46.
Rausell,C. Pardo-Lopez,L. Sanchez,J. Munoz-Garay,C. Morera,C. Soberon,M. Bravo,A.
2004. Unfolding events in the water-soluble monomeric Cry1Ab toxin during transition to oligomeric pre-pore and to membrane inserted pore channel Journal of Biological Chemistry, 279, 55168-55175.
Vazquez-Padron,R.I. de la Riva,G. Silva,Y. Pham,S.M. Soberon,M. Bravo,A. Aitouche,A.
2004. Cryptic endotoxic nature of Bacillus thuringiensis Cry1Ab insecticidal crystal protein FEBS Letters, 570, 30-36.
da Silva,S.M.B. Silva-Werneck,J.O. Falcao,R. Gomes,A.C. Fragoso,R.R. Quezado,M.T. Neto,O.B.O. Aguiar,J.B. de Sa,M.F.G. Bravo,A. Monnerat,R.G.
2004. Characterization of novel Brazilian Bacillus thuringiensis strains active against Spodoptera frugiperda and other insect pests Journal of Applied Entomology, 128, 102-107.
Rausell,C. Garcia-Robles,I. Sanchez,J. Munoz-Garay,C. Martinez-Ramirez,A.C. Real,M.D. Bravo,A.
2004. Role of toxin activation on binding and pore formation activity of the Bacillus thuringiensis Cry3 toxins in membranes of Leptinotarsa decemlineata (Say) Biochimica Et Biophysica Acta-Biomembranes, 1660, 99-105.
Rausell,C. Munoz-Garay,C. Miranda-CassoLuengo,R. Gomez,I. Rudino-Pinera,E. Soberon,M. Bravo,A.
2004. Tryptophan Spectroscopy Studies and Black Lipid Bilayer Analysis Indicate that the Oligomeric Structure of Cry1Ab Toxin from Bacillus thuringiensis Is the Membrane-Insertion Intermediate Biochemistry, 43, 166-174.
de Maagd,R.A. Bravo,A. Berry,C. Crickmore,N. Schnepf,H.E.
2003. Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria Annual Review of Genetics, 37, 409-433.
Ibarra,J.E. Del Rincon,M.C. Orduz,S. Noriega,D. Benintende,G. Monnerat,R. Regis,L. De Oliveira,C.M. Lanz,H. Rodriguez,M.H. Sanchez,J. Pena,G. Bravo,A.
2003. Diversity of Bacillus thuringiensis Strains from Latin America with Insecticidal Activity against Different Mosquito Species Applied and Environmental Microbiology, 69, 5269-5274.
Gomez,I. Dean,D.H. Bravo,A. Soberon,M.
2003. Molecular Basis for Bacillus thuringiensis Cry1Ab Toxin Specificity: Two Structural Determinants in the Manduca sexta Bt-R(1) Receptor Interact with Loops alpha-8 and 2 in Domain II of Cy1Ab Toxin Biochemistry, 42, 10482-10489.
Lopez-Arellano,M.E. Flores-Crespo,J. Mendoza de Gives,P. Bravo-de-la-Parra,A. Herrera-Rodriguez,D. Liebano-Hernandez,E. Vazquez-Prats,V.M. Vargas-Uriostegui,P.
2002. In vitro lethal activity of Bacillus thuringiensis toxins against Haemonchus contortus eggs and infective larvae..International Journal of Nematology, 12, 66-72.
Gomez,I. Miranda-Rios,J. Rudino-Pinera,E. Oltean,D.I. Gill,S.S. Bravo,A. Soberon,M.
2002. Hydropathic complementarity determines interaction of epitope 869HITDTNNK876 in Manduca sexta Bt-R1 receptor with loop 2 of domain II of Bacillus thuringiensis Cry1A toxins Journal of Biological Chemistry, 277, 30137-30143.
Bravo,A. Sanchez,J. Kouskoura,T. Crickmore,N.
2002. N-terminal activation is an essential early step in the mechanism of action of the B. thuringiensis Cry1Ac insecticidal toxin Journal of Biological Chemistry, 277, 23985-23987.
Bravo,A. Miranda,R. Gomez,I. Soberon,M.
2002. Pore formation activity of Cry1Ab toxin from Bacillus thuringiensis in an improved membrane vesicle preparation from Manduca sexta midgut cell microvilli Biochimica Et Biophysica Acta-Biomembranes, 1562, 63-69.
Gomez,I. Sanchez,J. Miranda,R. Bravo,A. Soberon,M.
2002. Cadherin-like receptor binding facilitates proteolytic cleavage of helix alpha-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin FEBS Letters, 513, 242-246.
Zhuang,M. Oltean,D.I. Gomez,I. Pullikuth,A.K. Soberon,M. Bravo,A. Gill,S.S.
2002. Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation Journal of Biological Chemistry, 277, 13863-13872.
Garcia-Robles,I. Sanchez,J. Gruppe,A. Martinez-Ramirez,A.C. Rausell,C. Real,M.D. Bravo,A.
2001. Mode of action of Bacillus thuringiensis PS86Q3 strain in hymenopteran forest pests Insect Biochemistry and Molecular Biology, 31, 849-856.
Miranda,R. Zamudio,F.Z. Bravo,A.
2001. Processing of Cry1Ab delta-endotoxin from Bacillus thuringiensis by Manduca sexta and Spodoptera frugiperda midgut proteases: role in protoxin activation and toxin inactivation Insect Biochemistry and Molecular Biology, 31, 1155-1163.
Gomez,I. Oltean,D.I. Gill,S. Bravo,A. Soberon,M.
2001. Mapping the epitope in cadherin-like receptors involved in Bacillus thuringiensis Cry1A toxins interaction using phage display Journal of Biological Chemistry, 276, 28906-28912.
Nunez-Valdez,M. Sanchez,J. Lina,L. Guereca,L. Bravo,A.
2001. Structural and functional studies of alpha-helix 5 region from Bacillus thuringiensis Cry1Ab delta-endotoxin Biochimica Et Biophysica Acta-Protein Structure And Molecular Enzymology, 1546, 122-131.
de Maagd,R.A. Bravo,A. Crickmore,N.
2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world Trends in Genetics, 17, 193-199.
Soberon,M. Perez,R.V. Nunez-Valdez,M.E. Lorence,A. Gomez,I. Sanchez,J. Bravo,A.
2000. Evidence for intermolecular interaction as a necessary step for pore-formation activity and toxicity of Bacillus thuringiensis Cry1Ab toxin Fems Microbiology Letters, 191, 221-225.
Guereca,L. Bravo,A.
1999. The oligomeric state of Bacillus thuringiensis Cry toxins in solution Biochimica Et Biophysica Acta-Protein Structure And Molecular Enzymology, 1429, 342-350.
Bravo,A. Sarabia,S. Lopez,L. Ontiveros,H. Abarca,C. Ortiz,A. Ortiz,M. Lina,L. Villalobos,F.J. Pena,G. Nunez-Valdez,M.E. Soberon,M. Quintero,R.
1998. Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection Applied and Environmental Microbiology, 64, 4965-4972.
Flores,H. Soberon,X. Sanchez,J. Bravo,A.
1997. Isolated domain II and III from the Bacillus thuringiensis Cry1Ab delta-endotoxin binds to lepidopteran midgut membranes FEBS Letters, 414, 313-318.
Lorence,A. Darszon,A. Bravo,A.
1997. Aminopeptidase dependent pore formation of Bacillus thuringiensis Cry1Ac toxin on Trichoplusia ni membranes FEBS Letters, 414, 303-307.
Bravo,A.
1997. Phylogenetic relationships of Bacillus thuringiensis delta-endotoxin family proteins and their functional domains Journal of Bacteriology, 179, 2793-2801.
Bohorova,N. Cabrera,M. Abarca,C. Quintero,R. Maciel,A.M. Brito,R.M. Hoisington,D. Bravo,A.
1997. Susceptibility of four tropical lepidopteran maize pests to Bacillus thuringiensis CryI-type insecticidal toxins Journal Of Economic Entomology, 90, 412-415.
Bravo,A. Agaisse,H. Salamitou,S. Lereclus,D.
1996. Analysis of cryIAa expression in sigE and sigK mutants of Bacillus thuringiensis Molecular and General Genetics MGG, 250, 734-741 * .
Salamitou,S. Agaisse,H. Bravo,A. Lereclus,D.
1996. Genetic analysis of cryIIIA gene expression in Bacillus thuringiensis Microbiology, 142, 2049-2055 * .
Aranda,E. Sanchez,J. Peferoen,M. Guereca,L. Bravo,A.
1996. Interactions of Bacillus thuringiensis crystal proteins with the midgut epithelial cells of Spodoptera frugiperda (Lepidoptera: Noctuidae) Journal of Invertebrate Pathology, 68, 203-212.
Meza,R. Nunez-Valdez,M.E. Sanchez,J. Bravo,A.
1996. Isolation of Cry1Ab protein mutants of Bacillus thuringiensis by a highly efficient PCR site-directed mutagenesis system Fems Microbiology Letters, 145, 333-339.
Lorence,A. Darszon,A. Diaz,C. Lievano,A. Quintero,R. Bravo,A.
1995. Delta-endotoxins induce cation channels in Spodoptera frugiperda brush border membranes in suspension and in planar lipid bilayers FEBS Letters, 360, 217-222.
Ceron,J. Ortiz,A. Quintero,R. Guereca,L. Bravo,A.
1995. Specific PCR primers directed to identify cryI and cryIII genes within a Bacillus thuringiensis strain collection Applied and Environmental Microbiology, 61, 3826-3831.
Ceron,J. Covarrubias,L. Quintero,R. Ortiz,A. Ortiz,M. Aranda,E. Lina,L. Bravo,A.
1994. PCR analysis of the cryI insecticidal crystal family genes from Bacillus thuringiensis Applied and Environmental Microbiology, 60, 353-356.
Guereca,L. Bravo,A. Quintero,R.
1994. Design of an aqueous two-phase system for the purification of ICP from Bacillus thuringiensis Process Biochemistry, 29, 181-185.
Bravo,A. Quintero,R. Diaz,C. Martinez,A. Soberon,M.
1993. Efficiency of insecticidal crystal protein production in a Bacillus thuringiensis mutant with derepressed expression of the terminal oxidase aa3 during sporulation Applied Microbiology and Biotechnology, 39, 558-562.
Pereyra-Alferez,B. Bravo,A. Quintero,R. Soberon,X.
1992. The delta-endotoxin protein family displays a hydrophobic motif that might be implicated in toxicity Molecular Microbiology, 6, 2095-2098.
Bravo,A. Hendrikx,K. Jansens,S. Peferoen,M.
1992. Immunocytochemical analysis of specific binding of Bacillus thuringiensis insecticidal crystal proteins to lepidopteran and coleopteran mudgut membranes Journal of Invertebrate Pathology, 60, 247-253.
Bravo,A. Jansens,S. Peferoen,M.
1992. Immunocytochemical localization of Bacillus thuringiensis insecticidal crystal proteins in intoxicated insects Journal of Invertebrate Pathology, 60, 237-246.
Folch,J.L. Antaramian,A. Rodriguez,L. Bravo,A. Brunner,A. Gonzalez,A.
1989. Isolation and characterization of a Saccharomyces cerevisiae mutant with impaired glutamate synthase activity Journal of Bacteriology, 171, 6776-6781 * .
Bravo,A. Mora,J.
1988. Ammonium assimilation in Rhizobium phaseoli by the glutamine synthetase-glutamate synthase pathway Journal of Bacteriology, 170, 980-984 * .
Bravo,A. Becerril,B. Mora,J.
1988. Introduction of the Escherichia coli gdhA gene into Rhizobium phaseoli: effect on nitrogen fixation Journal of Bacteriology, 170, 985-988 * .
Libros y capítulos recientes
Bravo,A. Gill,S.S. Soberon,M. 2019. Bacillus thuringiensis: Mechanisms and use [This article is an update of A. Bravo, M. Soberón, S.S. Gill, 6.6 en: Encyclopedia of Microbiology. Elsevier. pags. 307-332
Bravo de la Parra,M.A. Soberon Chavez,M. 2019. Desarrollos biotecnológicos en algodonero en: Souza Saldivar,V. Algodón GM en Mexico: 20 años de siembra y experiencia. CD MX. UNAM. pags. 43-52
Rocha Munive,M.G. Eguiarte Fruns,L.E. Soberon Chavez,M. Bravo de la Parra,M.A. Souza Saldivar,V. 2019. Algodón GM en Mexico: 20 años de siembra y experiencia. CD MX:. UNAM.
Soberon,M. Monnerat,R. Bravo,A. 2018. Mode of Action of Cry Toxins from Bacillus thuringiensis and Resistance Mechanisms en: Mandal,M. Microbial Toxins. Dordrecht. Springer Netherlands. pags. 15-27
Bravo,A. Pacheco,S. Gomez,I. Garcia-Gomez,B. Onofre,J. Soberon,M. 2017. Insecticidal Proteins from Bacillus thuringiensis and Their Mechanism of Action en: Crickmore,N. Bacillus thuringiensis and Lysinibacillus sphaericus: Characterization and use in the field of biocontrol. Cham. Springer International Publishing. pags. 53-66
Soberon,M. Bravo,A. Blanco,C.A. 2016. Strategies to Reduce Insecticide Use in Agricultural Production en: Reference Module in Food Science. Elsevier.
Soberon,M. Monnerat,R. Bravo,A. 2016. Mode of Action of Cry Toxins from Bacillus thuringiensis and Resistance Mechanisms en: Mandal,M. Microbial Toxins. Dordrecht. Springer Netherlands. pags. 1-13
Bravo,A. Martinez-de-Castro,D.L. Sanchez-Quintana,J. Canton,P.E. Mendoza,G. Gomez,I. Pacheco,S. Garcia-Gomez,B.I. Onofre,J. Ocelotl,J. Soberon,M. 2015. Mechanism of action of Bacillus thuringiensis insecticidal toxins and their use in the control of insect pests en: Alouf,J.E. Comprehensive Sourcebook of Bacterial Protein Toxins 4a ed. Elsevier. pags. 858-873
Bravo,A. Soberon,M. Gao,Y. 2015. Preface en: *bravo Bt Resistance: Characterization and Strategies for GM Crops Producing Bacillus thuringiensis Toxins. Oxford. CABI. pags. xi-xii
Bravo,A. Gomez,I. Mendoza,G. Gaytan,M. Soberon,M. 2015. Different models of the mode of action of Bt 3d-Cry toxins en: *bravo Bt resistance – characterization and strategies for GM crops expressing Bacillus thuringiensis toxins. Oxford. CABI. pags. 56-68
Soberon,M. Garcia-Gomez,B.I. Pacheco,S. Sanchez-Quintana,J. Tabashnik,B.E. Bravo,A. 2015. Countering pest resistance with genetically modified Bt toxins en: *bravo Bt resistance-characterization and strategies for GM crops expressing Bacillus thuringiensis. Oxford. CABI. pags. 150-161
Soberon,M. Gao,Y.L. Bravo,A. 2015. Bt resistance- characterization and strategies for GM crops expressing Bacillus thuringiensis toxins Oxford:. CABI. 213 p.
Soberon,M. Gomez,I. Garcia-Gomez,B.I. Carmona,D. Ocelotl,J. Villanueva,F. Flores,B. Bravo,A. 2014. Mode of action of mosquitocidal toxins from Bacillus thuringiensis and their use in control of insect vectors of human diseases en: Biotechnology: beyond borders. CSIR National Chemical Laboratory. pags. 279-288
Bravo,A. Martinez-de-Castro,D.L. Sanchez,J. Munoz-Garay,C. Matus,V. Canton,P.E. Lopez-Diaz,J. Portugal,L. Mendoza,G. Soberon,M. 2014. Mode of action of Bacillus thuringiensis toxins and their use in transgenic crops to control insect pests en: Biotechnology: beyond borders. CSIR National Chemical Laboratory. pags. 122-134
Zuniga-Navarrete,F. Bravo,A. Soberon,M. Gomez,I. 2012. Role of GPI-anchored membrane receptors in the mode of action of Bacillus thuringiensis Cry toxins en: Larramendy,M.L. Integrated Pest Management and Pest Control- Current and Future Tactics. Intech. pags. 551-566
Soberon,M. Bravo,A. 2011. Control de insectos con Bacillus thuringiensis, un método efectivo y compatible con el ambiente en: V CICLO MUJER CIENCIA. Mexico,D.F:. Editores Mujeres en la Ciencia. pags. 1-11
Bravo,A. del Rincon-Castro,M.C. Ibarra,J.E. Soberon,M. 2011. Towards a healthy control of insect pest: Potential use of Microbial insecticides en: Fernandez-Bolanos,J.G. Green trends in insect control. London. Royal Society of Chemistry. pags. 266-299
Soberon,M. Pardo,L. Munoz-Garay,C. Sanchez,J. Gomez,I. Porta,H. Bravo,A. 2010. Pore Formation by Cry Toxins en: Lakey,J. Proteins: Membrane Binding and Pore Formation (serie Advances in Experimental Medicine and Biology vol 677). Austin, TX. Landes Bioscience y Springer. pags. 127-142
Bravo,A. Gill,S.S. Soberon,M. 2010. Bacillus thuringiensis Mechanisms and Use with addendum 2010 en: Gill,S.S. Insect Control Biological and Synthetic Agents. Elsevier. pags. 247-282
Bravo,A. 2008. Historia de cómo llegamos a proponer el modelo que describe cómo funcionan las toxinas Cry insecticidas producidas por la bacteria Bacillus thuringiensis en: Estrada-Orihuela,S. Aportaciones científicas y humanísticas mexicanas en el siglo XX. Mexico. Fondo de Cultura Economica. pags. 92-103
Soberon,M. Bravo,A. 2008. Las toxinas Cry de Bacillus thuringiensis: modo de acción y consecuencias de su aplicación en: *agustin Una ventana al quehacer científico. Instituto de Biotecnología de la UNAM 25 aniversario, cap 27. Mexico, D.F.. UNAM. pags. 303-314
Masson,L. Letowski,J. Bravo,A. Brousseau,R. 2007. Using DNA Microarrays for Assessing Crystal Protein Genes in Bacillus thuringiensis en: Proceedings of the 6th Pacific Rim Conference on the Biotechnology of Bacillus thuringiensis and its Environmental Impact,. pags. 28-30
Pardo,L. Gomez,I. Munoz-Garay,C. Jimenez-Juarez,N. Sanchez,J. Perez,C. Soberon,M. Bravo,A. 2007. Oligomer Formation of Different Cry Toxins Indicates that a Pre-Pore is an Essential Intermediate in the Mode of Action of the Three-Domain Cry Family en: Proceedings of the 6th Pacific Rim Conference on the Biotechnology of Bacillus thuringiensis and its Environmental Impact. pags. 7-8
Perez,C. Fernandez,L.E. Sun,J.G. Folch,J.L. Gill,S.S. Soberon,M. Bravo,A. 2007. Cyt1Aa from Bacillus thuringiensis subsp. israelensis Synergizes Cry11Aa Toxin Activity by Functioning as a Membrane-Bound Receptor en: Proceedings of the 6th Pacific Rim Conference on the Biotechnology of Bacillus thuringiensis and its Environmental Impact. pags. 9-11
Soberon,M. Gomez,I. Pardo,L. Munoz,C. Fernandez,L.E. Perez,C. Gill,S.S. Bravo,A. 2007. Important Interactions with membrane Receptors in the Mode of Action of Bacillus thuringiensis Cry toxins en: Vincent,C. 6th Pacific Rim Conference on the biotechnology of Bacillus thuringiensis and its Environmental Impact, cap 1. Montreal. Erudit. pags. 1-6
Gomez,I. Miranda-Rios,J. Arenas,I. Grande,R. Becerril,B. Bravo,A. Soberon,M. 2007. Identification of scFv Molecules that Recognize Loop 3 of Domain II and Domain III of Cry1Ab Toxin from Bacillus thuringiensis en: Vincent,C. 6th Pacific Rim Conference on the biotechnology of Bacillus thuringiensis and its Environmental Impact,. Montreal. Erudit. pags. 12-14
Munoz,R. Pardo,L. Sanchez-Quintana,J. Raussell.C. Soberon,M. Bravo,A. 2006. Mecanismos moleculares de insercion de la toxina Cry de Bacillus thuringiensis en membrana en: Garcia-Colin,L. La fisica biologica en Mexico. Mexico. El Colegio Nacional. pags. 1-27
Bravo,A. Soberon,M. Gill,S.S. 2005. Bacillus thuringiensis, mechanism and use en: Iatrou,K. Comprehensive molecular insect science. Elsevier. pags. 175-205
Soberon,M. Nuñez,M. Gomez I. Sanchez-Quintana,J. Bravo,A. 2004. Functional studies of helix a-5 region from Bacillus thuringiensis Cry1Ab d-endotoxin shows that conserved residues are important for pore formation and stability but not for oligomer formation. en: Lazarovici,P. Pore-forming peptides and protein toxins. London ;New York. Taylor & Francis. pags. 90-101
Nunez-Valdez,M.E. Ramírez-Gama,R.M. Calderon,M.A. Hernandez,L. Romero.A. Rodríguez-Segura,Z. Aranda,E. Bravo,A. Villalobos-Hernandez,F.J. 2003. Bacterias entomopatógenas para el control de larvas de Phyllophaga spp en: Aragon,G.A. Estudios Sobre Coleópteros del Suelo en América. Puebla. Universidad Autónoma de Puebla. pags. 347-359
Ibarra,A. Soberon,M. Bravo,A. 2003. La biotecnología y el control biológico de insectos en: *bolivar Fronteras de la Biología en los Inicios del Siglo XXI, Módulo III. Mexico,D.F.. El Colegio Nacional. pags. 27-52
Soberon,M. Bravo,A. 2001. Bacillus thuringisensis y sus toxinas insecticidas en: Martinez-Romero,E. Microbios en linea. Coordinacion de la Investigacion Cientifica. pags. 221-235
Bravo,A. 2001. Proteínas insecticidas de Bacillus thuringiensis en: Ferre,J. Bioinsecticidas: Fundamentos y aplicaciones de Bacillus thuringiensis en el control integrado de plagas. Navarra. Universidad Pública de Navarra. pags. 73-88
Bravo,A. Arrieta,G. Benintende,G. Real,M.D. Espinoza,A.M. Ibarra.J. Monnerat,R. Orduz,S. Soberon,M. 2001. Metodologías utilizadas en investigación sobre bacterias entimopatógenas. Mexico, D.F.: UNAM.
Monnerat,R. Bravo,A. 2000. Proteinas bioinsecticidas produzidas pela bacteria Bacillus thuringiensis en: de Azevedo,L. Contole biologico. EMBRAPA.
Bravo,A. 1999. 3 en: Biotechnology of Bacillus thuringiensis. Beijing, China.. Science Press. pags. 177-178
Otras Publicaciones
Velasquez,L.F. Canton,P.E. Sanchez-Flores,A. Bravo,A. Ceron,J.
2020. De novo transcriptome assembly of Premnotrypes vorax (Coleoptera: Curculionidae) Research Square, Preprint posted 17 Jan, .
Samaniego-Gaxiola,J.A. Pedroza-Sandoval,A. Bravo,A. Sanchez,J.F. Pena-Chora,G. Mendoza-Flores,D. Chew-Madinaveitia,Y. Gaytan-Mascorro,A.
2019. Fumigación con ácido acético y antimicrobianos para disminuir mortandad de Chrysoperla carneapor infección indeterminada Revista Mexicana de Ciencias Agricolas, 10, 973-986.
Wan,L. Lin,J. Du,H. Bravo,A. Soberon,M. Peng,D. Sun,M.
2018. Bacillus thuringiensis targets the host intestinal epithelial junctions for successful infection of Caenorhabditis elegans bioRxiv, preprint posted June 4, 2018, Now published in Environmental Microbiology doi: 10.1111/1462-2920.14528.
Bravo-de-la-Parra,A.
2015. Viejas y nuevas tendencias en el uso de la fluorescencia para el análisis Biotecnología en Movimiento.Revista de divulgación del Instituto de Biotecnología de la UNAM, 1, 26.
Bravo,A.
2013. Biotecnología agrícola y agroecología, Ciencia, Revista de la Academia Mexicana de Ciencia, 64, 68-77.
Vazquez-Pineda,A. Bravo-de-la-Parra,A. Mendoza de Gives,P. Liebano-Hernandez,E. Hernandez-Linares,I. Yanez-Perez,N. Aguilar-Marcelino,L. Ramirez-Vargas,G. Hernandez-Castro,E. Gutierrez-Segura,I. Lopez-Arellano,E.
2012. Use of Bacillus thuringiensis products as alternative method of control against important veterinary parasitic nematodes : Review Revista Mexicana de Ciencias Pecuarias, 3, 77-88.
Ibarra,J.E. Castro,M.C. Galindo,E. Patino,M. Serrano,L. Garcia,R. Carrillo,J.A. Pereyra-Alferez,B. Alcazar-Pizana,A. Luna-Olvera,H. Galan-Wong,L. Pardo,L. Munoz-Garay,C. Gomez,I. Soberon,M. Bravo,A.
2006. [Microorganisms in the biological control of insects and phytopathogens] Revista Latinoamericana de Microbiologia, 48, 113-120.
de Maagd,R.A. Bravo,A. Crickmore,N.
2005. Bt toxin not guilty by association Nature Biotechnology, 23, 791.
Miranda,R. Gomez,I. Soberon,M. Bravo,A.
2002. Mecanismo de accion de las toxinas Cry de Bacillus Thuringiensis.TIP revista especializada en Ciencias Quimico-Biologicas, 5, 5-13.
Aranda,E. Sanchez,J.F. Lina,L. Peferoen,M. Bravo,A.
1999. Analisis de la union in vitro e in vivo de las d-endotoxinas de Bacillus Thuringiensis al epitelio intestinal de Diatrea grandiosello.Biotecnologia, 3, 95-105.
Bravo,A. Lorence,A. Quintero,R.
1995. Biopesticidas compatibles con el medio ambiente: Bacillus thuringiensis, un modelo unico.Biocontrol, 1, 41-55.
Patentes
L. Pardo-López, E. B. Tabashnik, M. Soberón-Chavéz y M. A. Bravo-De La Parra 2009 Supresión de resistencia en insectos hacia las toxinas Cry de Bacillus thuringiensis utilizando toxinas que no requieren al receptor caderina.UNAM Europa, China, Canadá, India, Brasil y México (Números de solicitud pendientes). (en trámite)
M. Soberon M y M. A. Bravo 2008 Novel bacterial proteins with pesticidal activity.UNAM China 200680032864.5, Brasil PI0613111-5, India 200800272, Estados Unidos sin número y Europa 06795076.6. (en trámite)
L. Pardo-López, E. B. Tabashnik, M. Soberón-Chavéz y M. A. Bravo-De La Parra 2007 Supresión de resistencia en insectos hacia las toxinas Cry de Bacillus thuringiensis utilizando toxinas que no requieren al receptor caderina.UNAM PCT. (en trámite)
M. Soberon Ch. y M. A. Bravo de la P 2006 Novel bacterial proteins with pesticidal activity.UNAM PCT y Canadá 2625061. (en trámite)
M. Soberon y M. A. Bravo 2005 Novel bacterial proteins with pesticidal activity.UNAM Estados Unidos.
A. Bravo 2000 Confidencial.AVENTIS-UNAM Estados Unidos.
* Indica publicación con otra institución de adscripción